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ENVIRONMENTAL FLOW ASSESSMENT (EFA)

» “It/he quantity, timing, and quality of water flows required to
sustain freshwater and estuarine ecosystems and the human
livelihoods and wellbeing that depend on these ecosystems”
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O HABITAT SUITABILITY MODELS

* Habitat suitability curves

Habitat

e Statistical models

* Machine learning

[ |
0 max.

Q (m°*/s)



HABITAT SUITABILITY MODELLING — DATA COLLECTION

Field survey

o Species presence/absence or abundance

o Habitat characterisation

Depth

Velocity

Substrate

* Refuge



HABITAT SUITABILITY MODELLING — MAIN OBJECTIVE
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MACHINE LEARNING — STRENGTHS AND WEAKNESSES

= Non-linear
= \/ariables interactions
= Multiple input/output variable types: continuous, categorical, ordinal ...

Require programming

Low interpretability
Data/knowledge demanding

No Free Lunch: multiple available techniques + interaction with baseline
data + hyper-parameters’ selection + variable selection ...

= Overfitting



SUPERVISED MACHINE LEARNING CLASSIFICATION TECHNIQUES

« Multi-Layer Perceptrons * Mamdani Fuzzy Rule-Based Systems
Artificial Neural * Probabilistic Neural Networks Fuzzy logic-based 0-order Takagi-Sugeno-Khan FRBSs
Networks » Self-Organising Maps .

* Bayesian belief networks

» Classification & Regression Bayesian-based
Trees (CART) .
e C4.5/C5.0
Decision tree-based . N * Multivariate adaptive regression
Piecewise linear .
or splines

recursive partitioning ¢ Random forests
e Gradient boosting machines
or
Boosted regression trees Statistical Generalised Linear Models (GLMs)
e .. * Generalised Additive Models (GAMs)

Support vector-based Support vector machines

Ensemble learning



SUPERVISED MACHINE LEARNING CLASSIFICATION TECHNIQUES

1. Multi- Layer Perceptrons (MLPs)

Input  Hidden Summation Output
2. Decision trees (CART) ayer layer layer layer
3. Random Forests (RFs) g
4, Support Vector machines (SVMs) f Prosonce
5. Fuzzy Rule-Based Systems (FRBSs) jj

node

" Ensemble learning



Multi-Layer Perceptrons (MLPs)

o 1%t machine learning technigue (McCulloch & Pitts, 1943).
o Backpropagation algorithm (Rumelhart et al., 1986).

o Inspired by human brain.

o Only numerical data.

o They are non-interpretable - Black box.
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Decision trees - CART

o Classification And Regression Trees (CART) (Breiman 1984)

o They are considered interpretable ML techniques

[ves ) Depth <0.38 o Variables effects modeled as a hierarchy = Evolutionary trees

o Stair-like decision surfaces = Multivariate decision trees
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Random Forests - RFs

o Ensemble ML technique based on the aggregation
of CARTs (Breiman 2001).
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o Keep decision tree advantages & render paramount

accuracy (1%).
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Support Vector machines (Cortes & Vapnik 1995) are non-
linear classifiers that use the kernel trick to create

maximum-margin discriminant/separating hyperplanes.
Paramount accuracy (2"9).

Only numerical data

They are non-probabilistic, although approaches exit (e.g.

Platt 2000)

They are non-interpretable = Black box.
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Support Vector Machines - SVMs
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Fuzzy Rule-Based Systems - FRBSs

/

o Mimic human reasoning = Interpretable
* IF velocity is Low, depth is High, substrate is Medium THEN the habitat suitability is High.

o Based on Zadeh'’s fuzzy set theory (Zadeh 1965)

o Can be data-driven, expert-knowledge/literature-based or both (hybrid)
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NSEMBLE LEARNING
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Modeled
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ENSEMBLE LEARNING - EXAMPLE
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Conclusions

o Suited for habitat suitability/preference modelling = flexible techniques

(different data types +non-linear + variables interactions + ...)

o Multi-Layer Perceptron (MLP) (15t ML technique) = Deep learning

o Exploration/interpretation > Decision trees (e.g. CART)

o Performance = Random Forests (RFs) (1%t option)

o Performance = Support Vector Machines (SVMs) (2"¢ option)
o Incomplete data = Fuzzy Rule-Based Systems (FRBSs)

o Unclear/unreliable habitat suitability/preferences = Models’ ensembles
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