The Water JPI

Joint Programming Initiative Water Challenges for a Changing World

Jornada de Presentación a la Comunidad Científica MINECO 18 de diciembre de 2012

The vision document

The grand
 challenge:
 "Achieving
 Sustainable Water
 Systems for a
 Sustainable
 Economy in Europe
 and Abroad"

JPI Objectives

- Involving water end-users for effective RDI results uptake.
- Attaining critical mass of research programmes.
 - Involve at least two-thirds of the public National water RDI investment in Europe.
- Reaching effective, sustainable coordination of European water RDI.
- Harmonising National water RDI agendas in Partner Countries.
- Harmonising National water RDI activities in Partner Countries.
 - Develop a catalogue of jointly programmed activities whose global budget amounts to at least 20 % of the total water RDI budget of partner Programmes.
- Supporting European leadership in science and technology.

JPI Research Questions

- Maintaining Ecosystem Sustainability
- Developing safe water systems for the citizens
- Promoting competitiveness in the water industry
- Implementing a water-wise bio-based economy
- Closing the water cycle gap

JPI Governance Governing Board

- Assembly of RDI Programme owners
- Meets every year, has met twice
- Members nominate members of the Executive Board
- President: Marina Villegas, MINECO
- Vice-President, Renske Peters, NL Innovation
- Makes strategic decisions
- Is the highest decision making level

JPI Governance Executive Board

- Assembly of RDI Programme managers
- Meets twice a year, has met four times
- President: Enrique Playán, MINECO
 - Also the Water JPI Coordinator
 - The Coordination Team daily manages the initiative
- Vice-President, Hans Kuypers, NL Innovation
- Makes tactical decisions
- Addresses daily management activitives

JPI Governance Advisory Boards

- Provide advice to
 - Governing Board
 - Executive Board
- Two boards:
 - Scientific and Technological Board
 - Stakeholders Advisory Group
- Meet once a year, have met once

Scientific and Technological Board

- President: Damià BARCELÓ, IDAEA-CSIC, ICRA, Spain
- Vice-President: Cees BUISMAN, Wetsus, The Netherlands
- Other members:
 - Dr. Luc ABBADIE
 - Prof. Eilon ADAR
 - Dr. Marc F.P. BIERKENS
 - Dr. Despo FATTA-KASSINOS
 - Prof. Robert FERRIER
 - Prof. Maria KENNEDY
 - Prof. Claudia PAHL-WOSTL

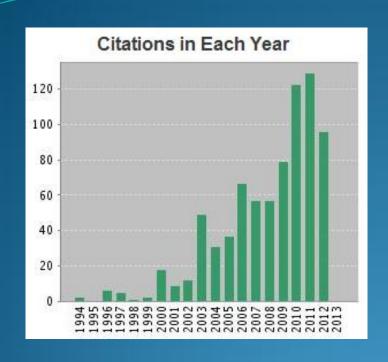
- Dr. Jens Christian REFSGAARD
- Dr. Susan D. RICHARDSON
- Prof. Karl-Ulrich RUDOLPH
- Dr. Sveinung SÆGROV
- Dr. João SANTOS PEREIRA
- Dr. Eric SERVAT
- Dr. Merete Johannessen ULSTEIN
- Dr. Michele VURRO

Stakeholders Advisory Board

- President: Water Supply and Sanitation Technology Platform
- Vice-President: Finnish Environmental Institute
- Other members:
 - Acqueau, the EUREKA Cluster for water
 - ARC, Aqua Research Collaboration
 - CIS-SPI, Science-Policy Interface
 - EMWIS, Euro-Mediterranean Information System on know-how in the water sector
 - EurAqua, European Network of Freshwater Research Organisations
 - EUREAU,
 - European Federation of National Associations of Water and Wastewater Services
 - EWA, European Water Association
 - FAO Land and Water
 - Júcar River Basin Organization
 - WssTP

JPI Governance Secretariat

- Addresses the day-to-day management of the Water JPI
- Supports the Coordination Team and the Advisory Boards
- Supports the Task Forces
- Currently implemented by FECYT

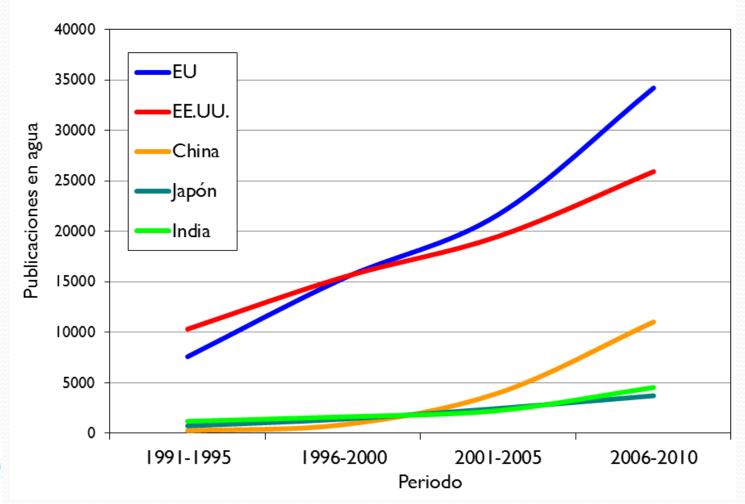

Mapping Water RDI funding

- Country summary reports were produced for all countries (30 = JPI + rest of MS + some AC)
- Surveyed / Estimated mobilization of resources through the JPI:

Study Target	Countries	National Public RDI Funding (M€)	Funding respect to MS+AC (%)
Europe	MS	351	94
	AC	22	6
	MS + AC	372	100
Water JPI	Partners	328	88
	Observers	30	8
	Part. + Obs.	358	96

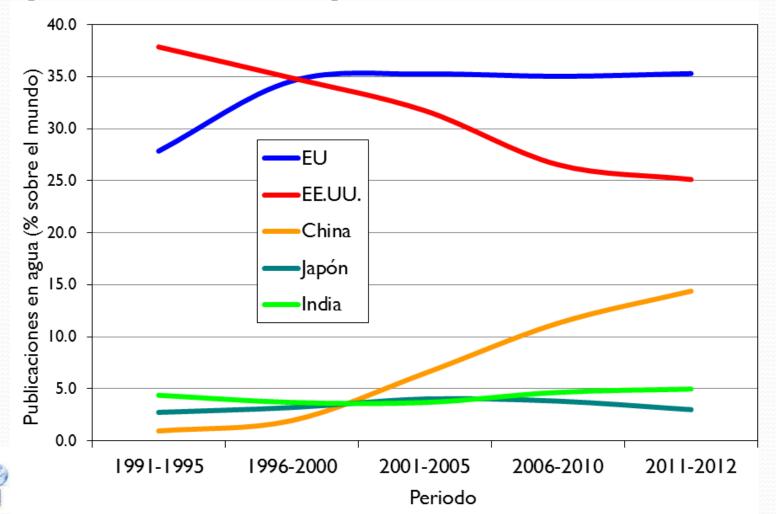
- The EC invests 130 M€/yr through the FP (average of FP6 and FP7 so far)
- Total investment in public RDI: about 500 M€/yr in MS+AC+EC

Mapping Water Research in **Europe** and Spain

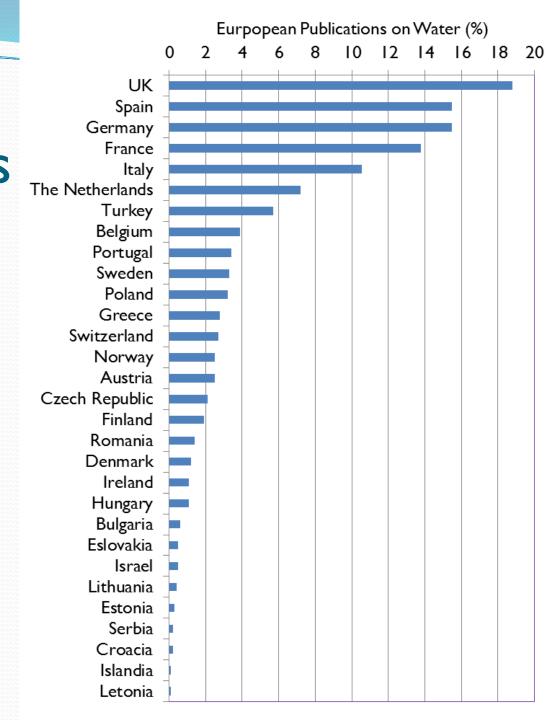

Miguel Ángel Gilarranz

A bibliometric study

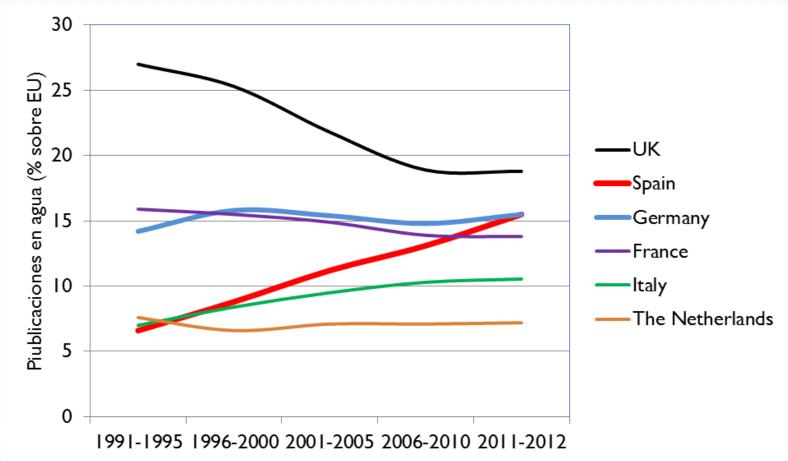
- Performed in July 2012
- ISI Web of Science
- Covering period: 1991-2012
- Using specific descriptors for water research and its sections



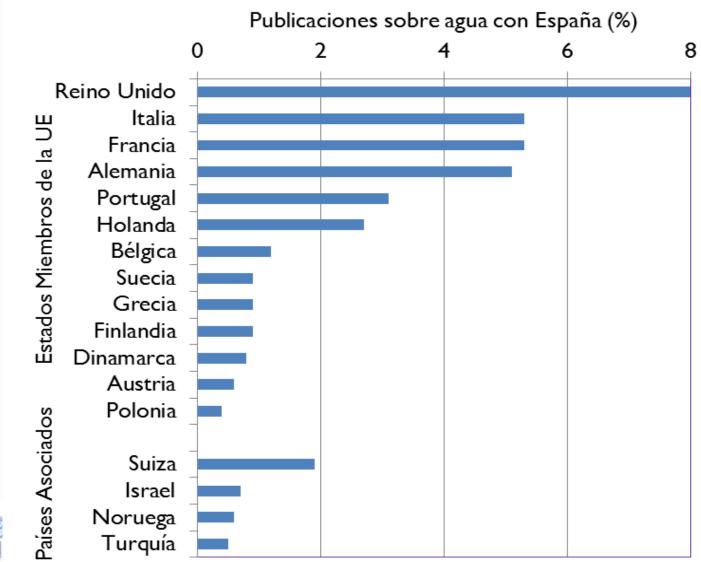
Europe leads in publications



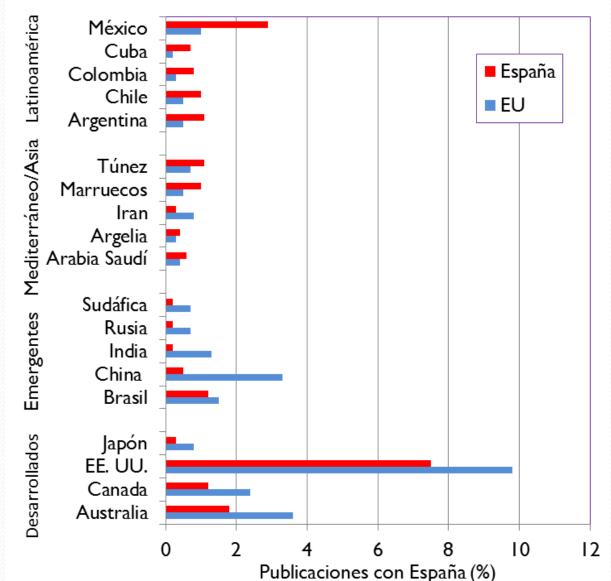
Europe leads in publications



Who publishes in Europe on water? (2011-2012)



Who publishes in Europe on water?



Who publishes with Spain? (2011-2012)

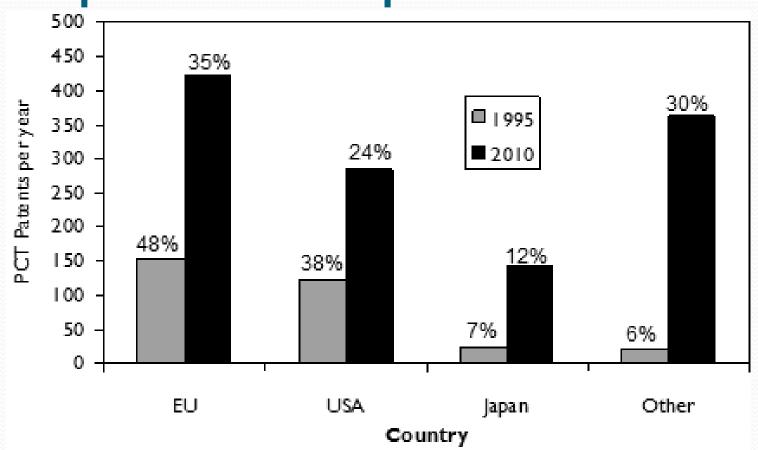
Who publishes with Europe and Spain? (2011-2012)

Spanish Leadership on Water Research

Tema	k publicaciones	% España en EU	Países que lideran: 1° al 6°					
Agua	34.4	13.1	UK	DE	FR	ES	IT	NL
Rural	24.7	12.7	UK	DE	FR	ES	IT	NL
Urbano	4.2	15.4	UK	ES	DE	FR	ΙT	TR
Industrial	7.3	13.6	UK	ES	FR	DE	IT	TR

National average of publications from Spain in Europe: 13.1 %

Green: better than our national average Red: worse than our national average


(ISI Web of Science, period 2006-2010, based on specific keywords)

Spanish Leadership on Water Research

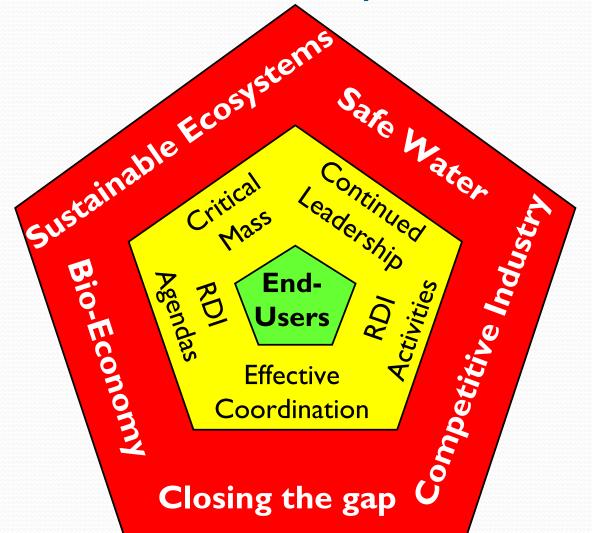
Tema	% España Países que lideran: 1° al 6° en EU						
	20.7	ES	DE	UK	FR	IT	EL
Regadíos	19.6	ES	UK	DE	TR	ΙΤ	FR
Contaminación Agraria	11.6	UK	TR	ES	DE	FR	IT
Disruptores endocrinos	21.3	ES	DE	ΙΤ	FR	UK	CZ
Sequía	18.6	ES	DE	UK	FR	IT	NL
Tratamiento de aguas	16.5	ES	UK	DE	PO	IT	TR
Tecnología de membranas	10.4	DE	FR	UK	IT	ES	NL
Inundaciones	7.5	UK	DE	FR	IT	NL	ES
Cambio climático	10.8	UK	DE	FR	ES	NL	IT
Servicios ecosistémicos	8.1	UK	DE	ΙΤ	NL	SE	FR
Soporte a políticas	10.7	UK	NL	DE	IT	ES	FR

Europe leads in patents too!

The Strategic Research and Innovation Agenda

Damià Barceló

The process to build the SRIA


- Preliminary work:
 - Definition of Research Questions (2011)
 - A framework for SRIA: Input from STB and SAG (2011)
 - Design of the full process (2012)
 - Agenda in progress (2013-14)
 - Identification of Gaps and Needs
 - Societal consultation
 - Document drafting
 - Agenda review (2014-15)
 - Full cycle

SRIA 1.0, June 2014 (working documents released since June 2013)

SRIA 2.0, December 2015

Recalling the structure: Objectives and research questions

Building the Agenda

- Research Questions
 - Are the five pillars of the SRIA
 - Are equally important to reach Water JPI objectives
- The Agenda derives from the Vision (document released in 2010)
- The Agenda must be scientific and technological
 - Interaction with the STB and other agents
- The Agenda must be Strategic
 - Consultation with stakeholders and society at large
- The Agenda is produced by Programme Owners and Managers

Gathering input from the STB

- First meeting of the STB, October 2011
- STB members filled in fiches with their ideas for SRIA elements addressing the five research questions
- Non-structured, bottom-up consultation
- Elements have been received partially responding to the five research questions
- Research questions are next described, and a summary of STB findings follows

Q1: Ecosystem Sustainability

- Integrated, trans-disciplinary research approach required
- Analyse influence of external factors on the water cycle:
- Exhaustion, overexploitation and depletion of water resources;
 - Pollution;
 - Climate change, inducing short to long-term variations in water availability;
 - Extreme events (droughts and floods);
 - Sea water intrusion; and
 - Morphological changes / infrastructures and works on rivers and lakes.

Q1: Ecosystem Sustainability

- Data mining and observatory
 - Integrated hydrological, hydrochemical and hydrobiological data
 - Analysis of status and long-term trends
 - Harmonised data on water flow, quality and biology... public repositories
 - Analyse combined effects of climate change, land management and other drivers
 - Geosciences observatory
 - Support research on up-scaling of water flow, reactive transport and floodplain ecosystems to the catchment scale
 - Based on experimental catchments + connected databases
- Global/Climate change
 - Impact of GC on extreme events: water quality and quantity
 - Risk assessment: global change + land management + pollution
 - Model development:, emphasis on hydrological change predictions and water quality
 - Policy relevant analysis of alternative storylines
 - Improved description of the physical processes: raw data
 - Fully coupled climate hydrological models

Q1: Ecosystem Sustainability

- Global/Climate change
 - How to address end users' needs?
 - Decision-making tools based on the selection of robust, possibly impact specific, down-scaling methods
 - Impact of climate change on sediments processes
 - More intense floods and storm flows may remobilise sediments
 - Changes in climate will change course of pollutants
 - Predict and quantify effects on sediment quality and quantity and impacts
 - Adaptive water management and integration policies
 - Developed and tested on relevant cases using:
 - Scenario development,
 - Uncertainty assessments,
 - Active stakeholder involvement, and
 - pilot experiments.
 - Required dynamic science-policy interface

Q2: Safe water for citizens

- What are the (new) contaminants, such as polar compounds, pharmaceuticals or emerging pathogens including viruses?
- How can we predict their environmental behaviour and treatment, and what impact do they have on human health?
- To what extent are these contaminants removed by natural processes in water and soil, or by physical techniques in drinking water treatment?
- How can the quality of the produced water be maintained in time and throughout the distribution system?
- Which health risks could result from new water concepts such as supply of hot water, cooling towers, water reuse and water in the city?
- Objectives:
 - Supply citizens with top water quality
 - Protecting citizens' life and property from natural hazards

Q2: Safe water for citizens

- New and emerging contaminants
 - Some identified in the new draft list of priority contaminants to be included in WFD
 - Research on contaminants and transformation products to assess environmental and health risks; cyanobacterial blooms
 - New sampling protocols for emerging contaminants
- Biotechnology for potable water treatment
 - Biological filtration processes for removal of dissolved and particulate natural organic matter, ammonia and trace organic contaminants
 - Research on robustness of biological water treatment (i.e., design and operational procedures, guidelines for aerobic systems)
 - Research in drinking water treatment processes (i.e., new disinfection by-products)

Q2: Safe water for citizens

- Secure monitoring and control of ageing urban water systems for a reliable and safe service
 - Robust technical solutions and methods for the water and wastewater sector
 - Efficient and secure use of monitoring and control systems,
 - Long term rehabilitation decisions
 - Leaking urban pipelines contaminating urban ground waters with concentrated emerging contaminants
- Monitoring and early warning systems for people
 - Flash urban floods
 - Flooding by groundwater level rise

Q3: Competitiveness in Water industry

- Innovative technologies are required to create products and services for the citizens and their governments.
- Engage in the production of problem-solving knowledge leading to the development of market oriented solutions.
- Cooperation with stakeholders to ensure production of business opportunities
- Technology for
 - Water storage,
 - Distribution,
 - Measurement,
 - Purification,
 - Treatment,
 - Desalination
 - Irrigation.
- Focus on new materials, processes, management tools, ICT, energy input and environmental profile.

Q4. Water-wise bio-economy

- Bio-based economy Intensifies agriculture
 - Demand for new non-food products, biopharming...
 - More pressure on natural resources: water and agrochemicals
- Need for more efficient agricultural systems.
- Understanding of agricultural water abstraction effects on European ecosystems and water delivery systems
- New techniques and plant materials resulting in increased irrigation efficiency and reduced consumptive use and water pollution will be developed.

Q4. Water-wise bio-economy

- Climate change... Effect on crop evapotranspiration?
 - Affect water resources and agricultural production
 - Modify equilibrium between water demand and supply
 - Networking observations, predicting trends

Q5: Closing the Water Cycle Gap

- Growing freshwater scarcity: reconciling water supply and demand
- Financial water issues need to be analysed for different uses and regions.
- Semi-arid areas: investigate closed water systems
- New integrated concepts related to:
 - water re-use,
 - energy,
 - recovery of valuable substances,
 - monitoring and control,
 - decentralized systems, interaction with natural resources
 - Management of Aquifer Recharge
 - Soil-Aquifer Treatment
- Combined socio-economic approach
- Deepening Water foot-printing
- Crossing hydrologic scales

Q5: Closing the Water Cycle Gap

- Constrains to reuse of treated wastewater (mainly for agriculture) in water scarce areas:
 - Financial: high treatment, network and energy costs, low prices of freshwater compared to reclaimed water, low user willingness to pay for reclaimed wastewater.
 - Health impacts and environmental safety: soil structure deterioration, increased salinity and excess of nitrogen.
 - Standards and regulations: often too strict, often inadequate.
 - Monitoring and evaluation: lack of qualified personnel, monitoring equipment or cost
 - Technical: insufficient/inappropriate infrastructure
 - Public acceptance and awareness: low involvement/awareness of both farmers and crop consumers of crops grown with reclaimed wastewater and/or sludge.
- Treated wastewater reuse for agricultural and landscape irrigation
 - Hazards associated with effluent reuse.
 - Risks to health and potential environmental damages.
 - Pathogenic organisms in effluents
 - Build-up of toxic materials within the soil, eventually reach the human food chain.
 - Substances negatively affecting plant growth and development.

Q5: Closing the Water Cycle Gap

- Treated wastewater reuse: groundwater recharge for
 - Control of saltwater intrusion barriers in coastal aquifers.
 - Further treatment for future reuse.
 - Incrementing potable or non-potable aquifers.
 - Storage for treated water, control of ground subsidence.
 - Loss of identity between treated water and ground water: psychology
- Treated wastewater for direct and indirect potable reuse
 - Investigate current limitations on direct reuse of wastewater for potable purposes
 - Indirect reuse for potable purposes takes place constantly and on a worldwide basis.
 - Develop educational campaigns about the use of reused water for drinking.
 - By virtue of residence time in water bodies, water often gains additional treatment... added opportunity for quality monitoring

