The Economics of Desalination for Various Uses

Carlos Campos

1. Introduction

2. Available desalination technologies

- 1. Desalination by MSF
- 2. Desalination by RO
- 3. Comparison of large scale desalination technologies

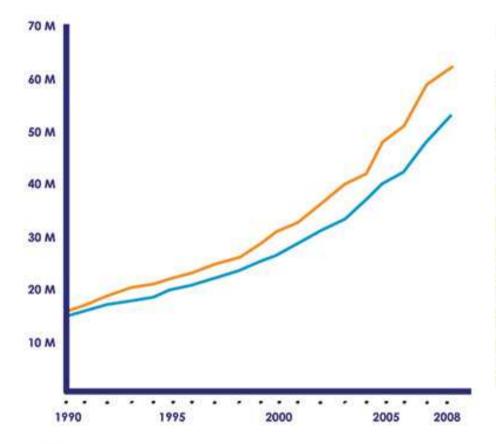
CETAQUA

ATER TECHNOLOGY CENTER

3. Desalted water and regenerated water uses

- 1. Desalted water sources and uses
- 2. Water regeneration technologies and uses

4. Desalination market


- 1. World desalination market
- 2. Situation in Spain

5. Costs of desalted water

- 1. Desalination cost evolution
- 2. Main factors affecting desalination costs
- 3. Breakdown of desalination costs
- 6. Environmental impacts of desalination
- 7. Conclusions

Introduction

CETAQUA

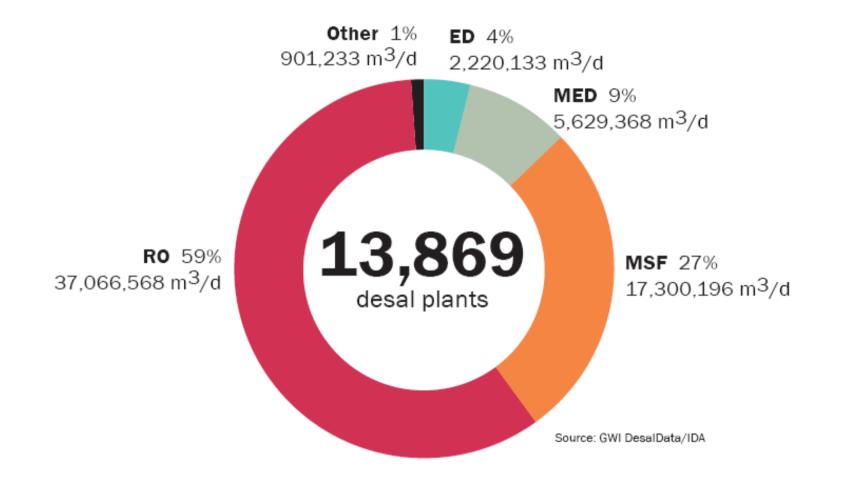
Year Comulative Cumulative contracted installed capacity copacity (Cubic meters/day in millions) 1990 15.857,805 14,800,583 1991 16,822,653 15,419,836

1992 18,114,214 16,418,681 1993 20.055.770 17.226.063 1994 20.883.758 18.217.561 1995 21.977.806 19.240.538 1996 23.251.897 20.742.183 1997 24.668.989 22.414.614 1998 26.295.486 23.931.037 1999 28.063.720 25.099.318 2000 30.657.957 26.703.437 2001 33.672.355 28.488.466 2002 35,926,728 31,646,385 2003 39.600.770 33.774.042 2004 42.358.399 37.308.670 2005 47.069.318 39.786.362 2006 51,627,430 42,978,277 2007 58.627.430 47.606.094 2008 62.750.220 52.333.950

Desalination technologies

Regeneration and reuse

Fulfillment of water requirements in the future


Source: Global Water Intelligence/DesalData.com International Desalination Association

Available desalination technologies (I)

Separation mechanism	Energy	Process	Name			
			Multi Stage Flash (MSF)			
		Eveneration	Multi Effect Distillation (MED)			
		Evaporation	Thermal Vapor Compression (TVC)			
	Thermal +		Solar Desalination (SD)			
Water	Electrical	Crystallization	Freezing			
separation		Crystallization	Formation of hydrates			
		Evaporation and filtration	Membrane Distillation (MD)			
	Electrical	Evaporation	Mechanical Vapor Compression (MVC)			
	Electrical	Ionic filtration	Reverse Osmosis (RO)			
	Electrical	Ionic migration	Electrodialysis (ED)			
Salt removal	Chamical	Others	Ionic Exchange (IX)			
	Chemical	Olleis	Extraction			

Available desalination technologies (II)

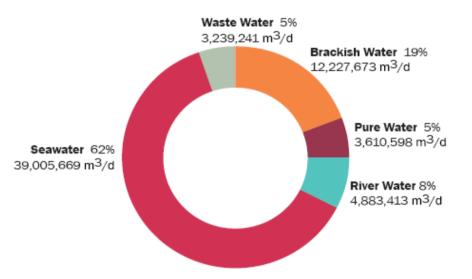
CETAQUA

WATER TECHNOLOGY CENTER

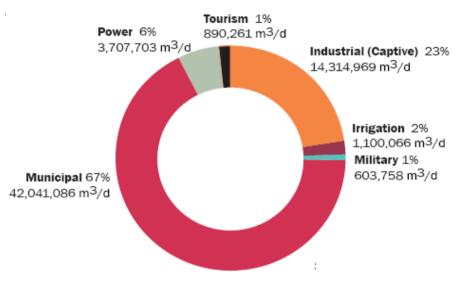
Comparison of large-scale desalination technologies

	MSF	RO			
Physico-chemical principle	Flash evaporation	Solution-diffusion			
Energy consumption (including auxiliaries)	Electrical: 2.5-5.0 kW·h/m ³ Thermal: 40-120 kW·h/m ³	Electrical: 3.5-4.5 kW·h/m ³ Thermal: None			
Plant top temperature level	~ 120°C	Seawater temperature. Limit ~ 35°C			
Energy requirements	Medium	Low			
Product quality (mg/L TDS)	1-50	Single stage: 250-350. Triple stage: 1-10			
Single unit size (m³/day)	120 000	Multiple of modular systems. 6 000-24 000			
Limiting factors	Pumps, valves, vacuum unit	Pumps			
Total capital costs	High	Low			
Specific water cost	High	Low at 250 mg/L TDS product; High at 10 mg/L TDS product			
Fully automatic & unattended operation	Possible	Possible			
Tolerance to changes in seawater composition	Medium-High	Very low-Low			
Replacement parts requirement	Low-Medium (large special pumps)	High (large pumps, membrane replacement)			
Maintenance requirements	Medium	High			
Scaling potential	Low-Medium	High			
Chemical consumption	High	High			
On-site requirements	Medium	Low			
Ratio between product to total seawater flow (conversion)	0.1-0.2	0.3-0.5			
Experience available	High	Medium			
Potential for further requirements	Low (at technological limit)	High			
Most needed R&D areas	Cheaper materials, cheaper and more efficient, heat transfer materials	Pre-treatment, stability of membranes			

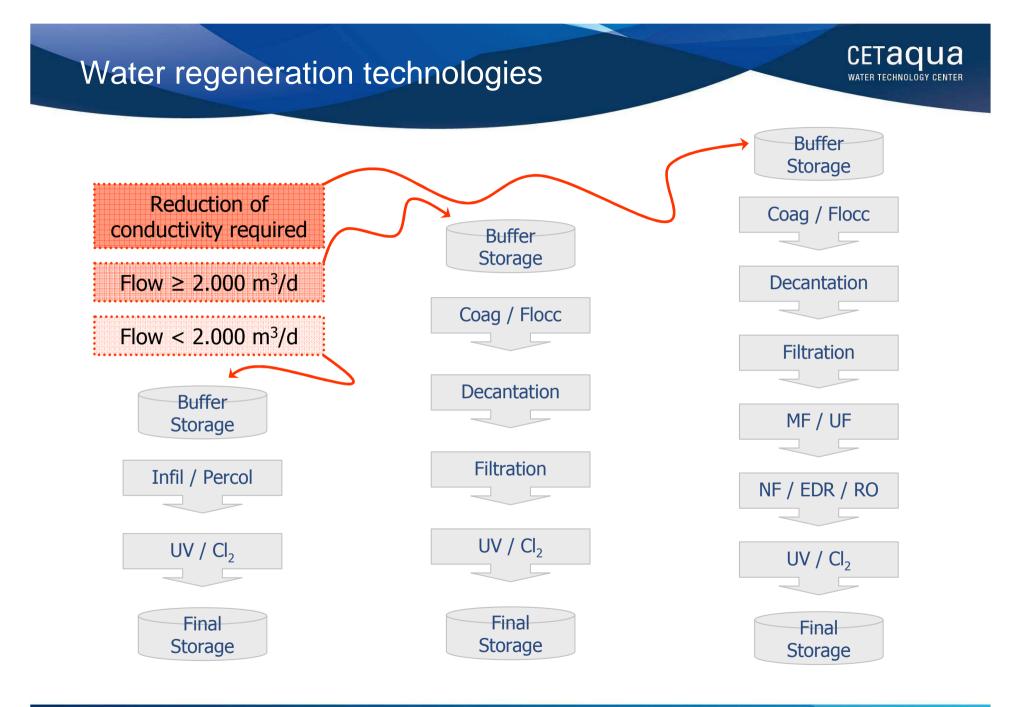
CETAQUA


NTER

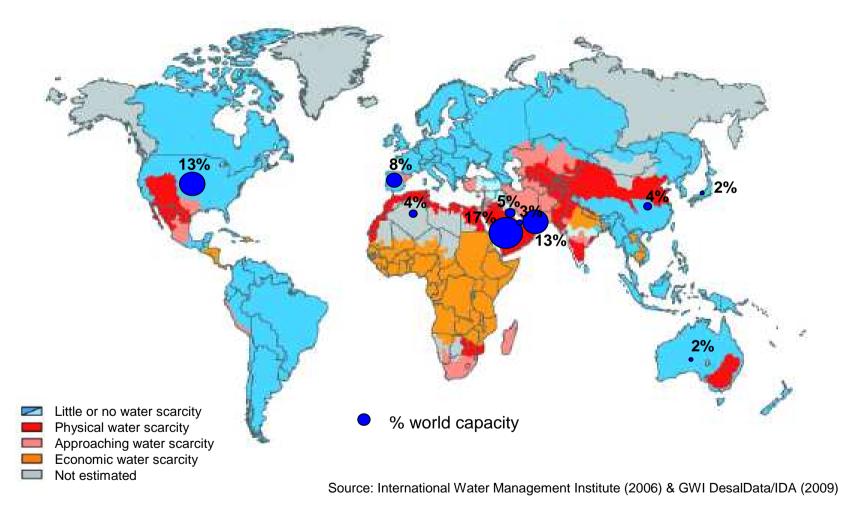
WATER TECHNOLOGY


Desalted water sources and uses

CETAQUA WATER TECHNOLOGY CENTER



Off-takers


Source: GWI DesalData/IDA

World desalination market

Major desalted water producing countries

World desalination market

Desalination membrane manufacturers in the world

CETAQUA

Situation of desalination in Spain

Urgent actions to be undertaken in the Spanish Mediterranean coast in the framework of the **A.G.U.A. Program**:

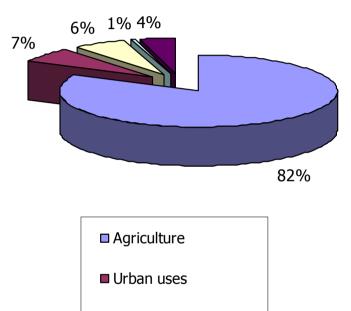
	N⁰ of actions	Contribution (Hm³/yr)	Investment	
Southern Mediterranean Basin	17	312	554 M€	
Segura Basin	24	336	1.336 M€	
Júcar Basin	40	270	798 M€	
Ebro Basin &Catalonia Internal Basins	24	145	1.110 M€	
TOTAL	(105)	1.063	3.798 M€	

21 desalination facilities are planned for 6 provinces on the Spanish Mediterranean coast

Situation of reuse in Spain

Councils with reuse installations

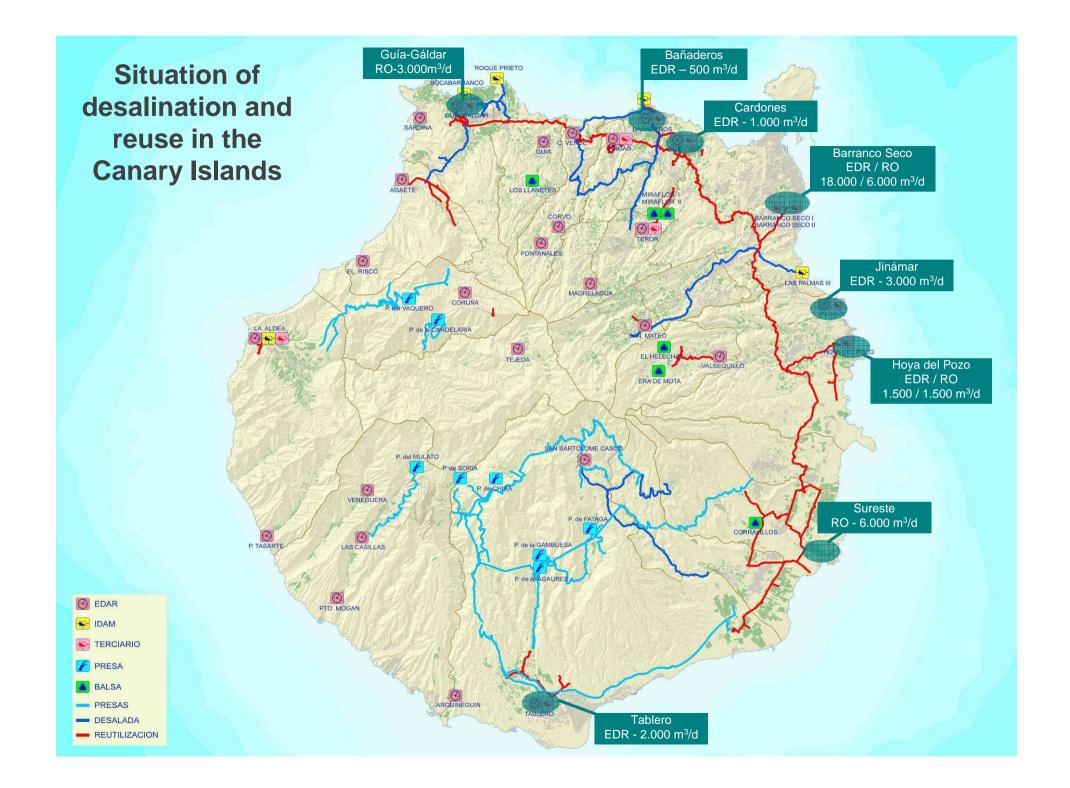
In Spain, 22% of the reclaimed wastewater produced is reused



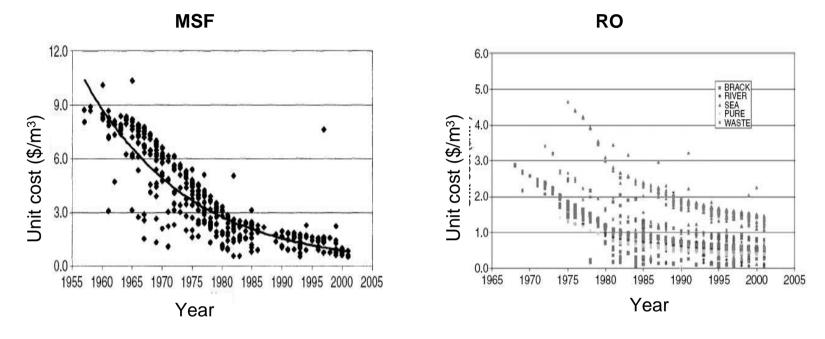
85% of the produced reclaimed water is consumed in the Mediterranean Coast and the Canary Islands

Final uses of reclaimed water

CETAQUA


WATER TECHNOLOGY CENTER

Leisure


□ Industry

Ecological restoration

Desalination cost evolution (I)

Source: Reddy and Ghaffour (2007) Desalination 205: 340-353

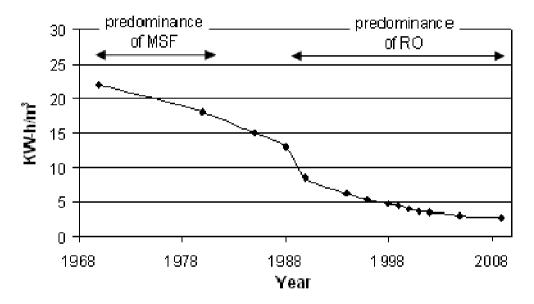
Desalination is still a costly water supply option compared to natural water resources (e.g. ground or surface water), but it may be soon a competitive alternative even in non-water stressed regions.

Desalination cost evolution (II)

Reduction of unit water cost mainly due to:

- Technological developments
 - Optimisation of the process design (equipments and configurations)

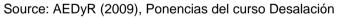
CETAQUA

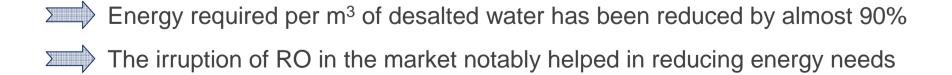

MSF

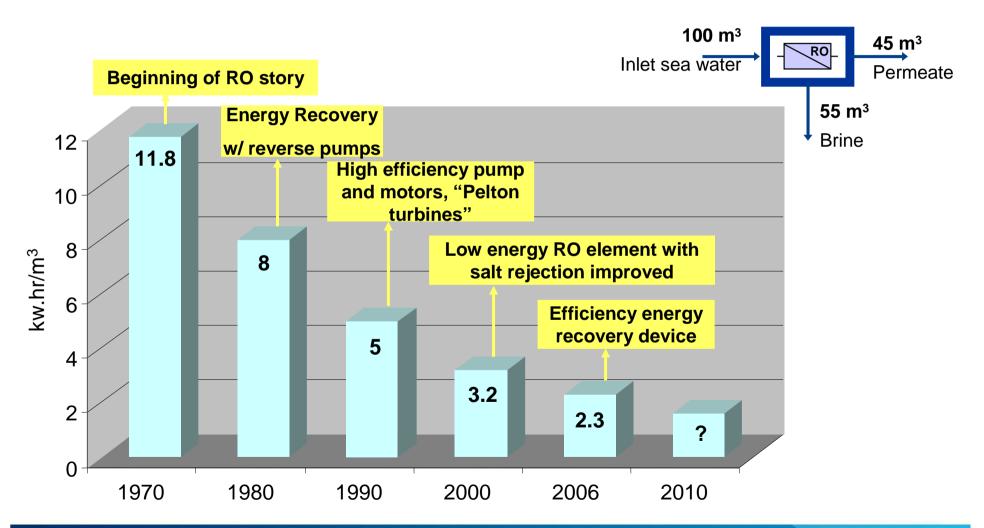
RO

- Improvement in the thermodynamic efficiency
- use of newer materials
- new construction and transportation techniques
- higher surface area per unit volume
- higher salt rejection factors
- extended life-span of membranes
- optimisation of pre-treatment options
- use of energy recover devices
- Increasing size of plants
- Lower interest rate and energy costs
- Changes in managing enterprise performance
- Intense competition between equipment suppliers worldwide

Desalination cost evolution (III)


Evolution of the energy consumption of desalted seawater in Spain




CETAQUA

Desalination cost evolution (IV)

Evolution of the electrical consumption for seawater 1st pass RO

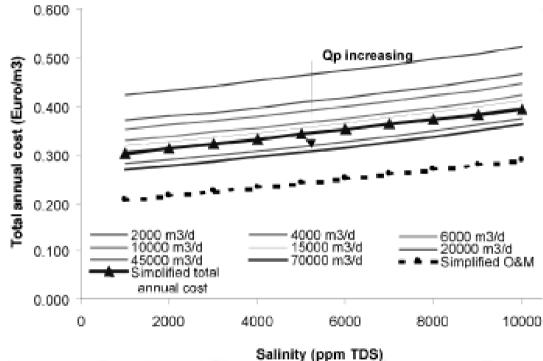
Main factors affecting desalination cost (I)

Site-specific cost-determining factors:

- Feed water characteristics
- Product water quality
- Plant capacity
- Plant reliability
- Concentrate disposal
- Space requirements
- Operation and maintenance
- Geographic location
- Energy availability

Most critical factor! It dictates not only the final cost but often also the desalination method

CETAQUA

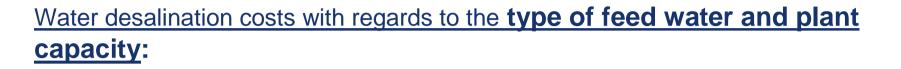

Most MSF plants operate in oil-producing countries (Persian Gulf) RO more common worldwide (Mediterranean Basin, Asia-Pacific region, USA...)

Main factors affecting desalination cost (II)

Water desalination costs with regards to the type of feed water and plant capacity:

CETAQUA

WATER TECHNOLOGY CENTER



Source: Georgopoulou et al., (2001) Desalination136: 307-315

The more salts to be removed, the more expensive the desalting process

Main factors affecting desalination cost (III)

 $\boldsymbol{\Sigma}$

Type of feed water	Plant capacity (m³/day)	Cost (€/m³)	
Brackish	< 1,000	0.63-1.06	
DIACKISH	5,000 - 60,000	0.21-0.43	
	< 1,000	1.78-9.00	
Securator	1,000 - 5,000	0.56-3.15	
Seawater	12,000 - 60,000	0.35-1.30	
	> 60,000	0.40-0.80	

Source: Karagiannis and Soldatos, (2008) Desalination 223: 448-456

CETAQUA

 \Rightarrow The more salts to be removed, the more expensive the desalting process

Main factors affecting desalination cost (IV)

Water desalination cost with regards to the type of energy:

Type of feed water	Type of energy used	Cost (€/m³)		
	Conventional	0.21-1.06		
Brackish	Photovoltaic	4.50-10.32		
	Geothermal	2.00		
	Conventional	0.35-2.70		
Coourotor	Wind	1.00-5.00		
Seawater	Photovoltaic	3.14-9.00		
	Solar collectors	3.50-8.00		

Source: Karagiannis and Soldatos, (2008) Desalination 223: 448-456

Existing MSF and RO plants are powered mainly by conventional sources of energy

Coupling of renewable energy sources (RES) and desalination systems is holding great promise

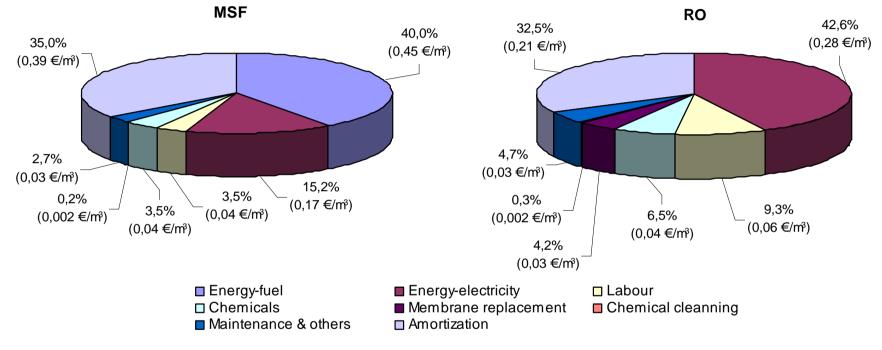
Current higher cost of RES is counterbalanced by their environmental benefits

Main factors affecting desalination cost (V)

Des. method	Type of feed water	Plant capacity (m ³ /day)	Cost (€/m³)	
MSF	Seawater	23,000 - 528,000	0.42-1.40	
		<20	4.50-10.32	
	Brackish	20 - 1,200	0.62-1.06	
		40,000 - 46,000	0.21-0.43	
RO		<100	1.20-15.00	
ĸu		250-1,000	1.00-3.14	
	Seawater	1,000 - 4,800	0.56-1.38	
		15,000 - 60,000	0.38-1.30	
		100,000 - 320,000	0.36-0.53	

Source: Karagiannis and Soldatos, (2008) Desalination 223: 448-456

CETAQUA

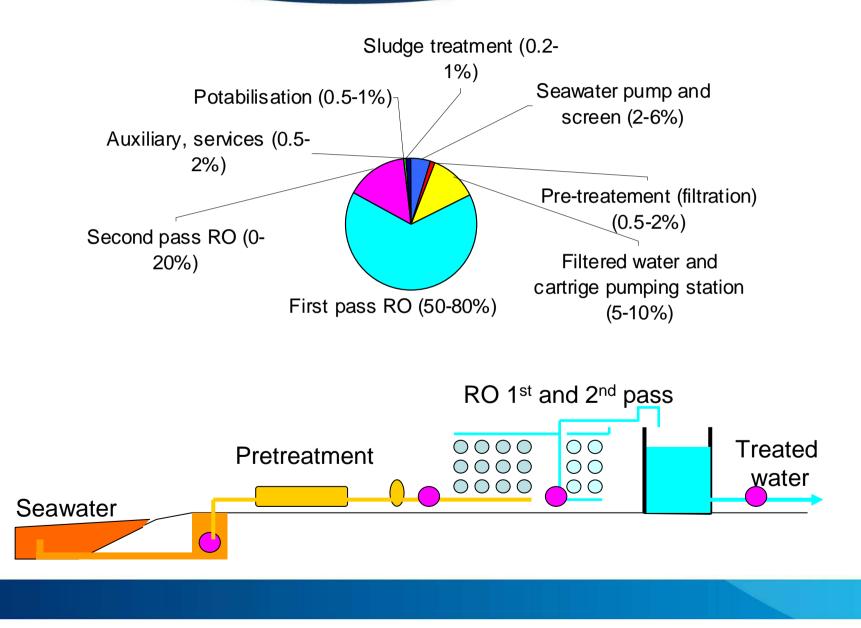


MSF is more cost intensive but have usually larger production capacities. It is rarely used for brackish water

RO is cheaper and more flexible technology. It is applied for both brackish and seawater

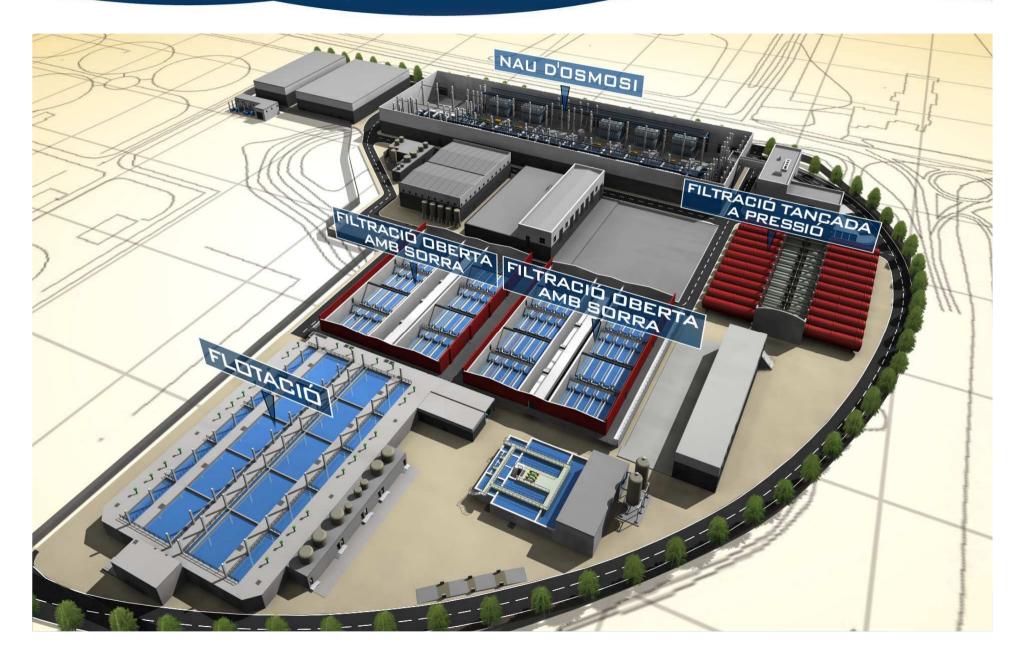
Breakdown of desalination cost

Source: AEDyR (2009), Ponencias del curso Desalación


Amortization and energy consumption represent the most significant portion of the total cost

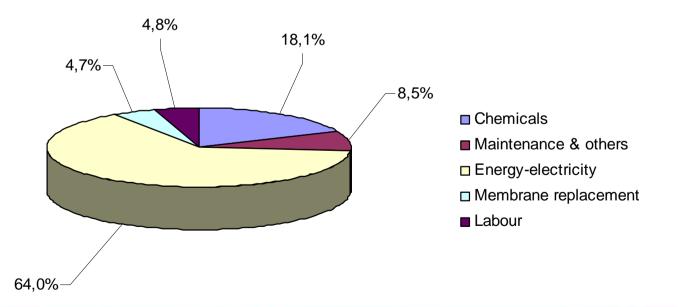
Energy consumption amounts up to 55.2% for MSF and to 42.6% for RO

Breakdown of energy consumption



Breakdown of desalination cost

BCN seawater desalination plant



Breakdown of desalination cost BCN seawater desalination plant

Production:	60 Hm³/yr / 180.000 m³/d
Technology:	RO
Conversion rate:	45%
Energy consumption:	4 kWh/m ³ (total)
	3 kWh/m ³ (RO)

Breakdown of costs (BCN desalination plant)

BCN brackish water desalination plant

Breakdown of desalination cost BCN brackish water desalination plant

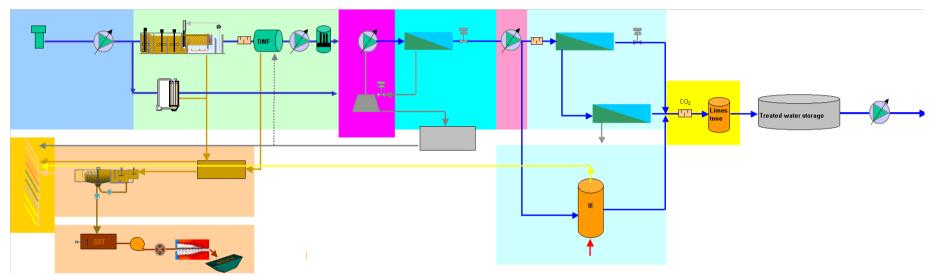
Production:	Hm ³ /yr / m ³ /d	
Technology:	RO	
Conversion rate:	95%	
Energy consumption:	kWh/m ³ (total) kWh/m ³ (RO)	

Breakdown of desalination costs

Environmental impacts of desalination (I)

	MSF (Mt/year)			RO (Mt/year)				
Power plant	CO ₂	SOX	NOX	Particles	CO ₂	SOx	NO _X	Particles
Coal fired	264.5	0.33	0.54	0.04	32.2	0.04	0.07	0.005
Oil fired	216.2	1.31	0.3	0.03	25.7	0.16	0.04	0.003
Gas turbine (CC)	141.6	0.01	0.23	0.01	12.9	0.001	0.02	0.001

Source: Nisan and Benzarti (2008), Desalination 229: 125-146


CETAQUA

Integration of non-pollution renewable energy sources within desalination plants needed

Environmental impacts of desalination (II)

Brine and chemicals discharge

CETAQUA

The **brine discharge** can impact the environment due to:

- the high salt content and high density: potential impact on the benthic sea life
- possible oxygen depletion when SBS is used as chlorine control

Pre-treatment residual **turbidity/TSS** can have an impact on photosynthesis activity by lowering the transmisivity of the water body at the reject point

Temperature can also be a potential effect of desalination, but mainly related to distillation (RO brine expected temperature increase is 1 to 2°C)

Environmental impacts of desalination (III)

Brine discharge evaluation

Regulation and dilution objectives:

- □ USEPA: 10% TDS limit
- Florida Department of Environmental Protection has considered an increase of up to 10% of chlorides as acceptable

CETAQUA

Australian projects request less than 1 to 2% TDS increase at the discharge zone limit.

Design of the brine discharge system:

- □ Transport direction and the impact range of a discharge plume is controlled by site-specific oceanographic conditions, such as:
 - currents
 - tides
 - water depth
 - bottom and shoreline topography
- The environmental and operational conditions can be investigated by hydrodynamic computer models

Environmental impacts of desalination (IV)

✤ Brine discharge evaluation

PERTH brine quality monitoring before discharge:

- Oxygen
- pH
- Turbidity
- Redox

CETAQUA WATER TECHNOLOGY CENTER

- Desalination represents a potential alternative technology for the efficient production of water from many sources.
- RO and MSF are the most installed technologies, their installation largely depending on energy availability.
- Costs associated with desalination depend on many site specific factors (feed water characteristics, product water quality, plant capacity) with energy availability being the most critical.
- Desalination costs have over the last decades steadily decreased thanks to continuous technological developments.
- However, desalination is still an expensive option compared to natural water resources and further research is needed to consolidate it as a competitive alternative.

- Amortization and energy consumption represent the most significant portion of the total desalination cost.
- > Environmental impacts of desalination comprise:
 - The emission of greenhouse gases by fossil fuelled plants
 - The **production** of huge amounts **of concentrated brine**, which cause adverse ecological effects on the surrounding ecosystems.
- Research on the use of renewable energy sources and on the treatment of brines is needed.

THANK YOU FOR YOUR ATTENTION!!