WATER FOR A STARVING WORLD some approaches since the 1977 warning

Malin Falkenmark SIWI and Stockholm Resilience Center

- UN Conferences: water blind or blue only
- 1980's: African drought dilemma, blue water scarcity
- 1990's: virtual water, river depletion, green water
- 2000's: MDG's/hunger alleviation, environmental sustainability/ecosystems, consumptive water use

Globally available water - the water paradigm

Rainfall partitioning

Backcasting/MDG's 2050

- possibility to meet food water requirements to feed humanity?
- possible pathways to hunger alleviation?
- ASSUMPTIONS: protect ecosystems by production on <u>current croplands</u>

Undernutrition vs food production

*no undernutrition -> 3000 kcal/p d

- 2500 kcal/p d = 20 % undernutrition
- 2000 kcal/p d = 40 % undernutrition

* assumed 20 % animal protein

How much water is there to meet requirements?

- requirement = 1300 m3/p yr-> enough to meet requirements?
- availability = 85 % of green water on croplands + 70 % of available blue (max + 15 % increase on irrig land)

(rainfall partitioning based PIK-model/ LPJm: pixels, climate change SRES A2, UN medium population)

country based calculations

-> water surplus countries, water deficit countries

Country based water deficits/surpluses and agricultural improvements

	Deficit (km ³ yr ⁻¹)	Surplus (km ³ yr ⁻¹)
Current water productivity	4471	2052
WP improvements	-1973	532
Irrigation expansion	-348	1379
Net deficit / surpl (round numbers)	-2150	3960

Compensate deficit by import??

income	deficit	population	HOW?
	km3/yr	bln	
LOW	1404	3.8 bln	national solutions
MEDIUM	487	2.1 bln	import
HIGH	259	0.5 bln	import

Food water deficit geography 2050

Can the food security goal be achieved?

30 % have surplus - 2.7 bln = can export

70 % have water deficit -2.6 bln = **can import**

-3.8 bln too poor = national solutions/ reduced diet expectations + food aid

Water shortage driven food trade

altogether 750 km3/yr

out of overall water deficit of 2150 km3/yr

ca 30 % only

Options for 3.8 bln poor

1) modernise agriculture/reduce water losses

2) produce what is possible/reduce diet expectations

0.6 bln: reduce meat 1.9 bln: to 2500 kcal/p d + food aid to poorest 1.3 bln: try to manage on 2000 kcal/p d + food aid to poorest

Pathways to the 2050 goal

ways to meet the food water requirements

Implications

- most food production can take place on current croplands
- loss reduction will be essential:

- water losses by agricultural modernisation in all developing countries - 2400 km3/yr to gain;

- food losses in the food chain - might reduce food production needs by some 20 %

 essential to generate economic development in poor countries to get purchasing power

- realism of huge virtual water flows in a carbon free world?
- realistic options for food loss reduction?
- realism of production explosion in surplus countries?
- maximising crop per drop

= loss of return flow = increased river depletion

Thankyou!