

Groundwater intensive use in Spain in the framework of IWRM

L. De Stefano, P. Martínez-Santos & E. López-Gunn

Botín Foundation Water Observatory Universidad Complutense de Madrid

Contents

- Overview of GW in Spain
- Evolution of approach to GW management
- Unsolved issues
- Bottlenecks & open questions

Groundwater in Spain

Over 730 water bodies, 353,300 km² Estimated available resources over 22,000 MCM

Groundwater demand

7,000 MCM/yr or 1/3 of the overall water demand

Groundwater uses

73% for irrigation21% for domestic use

5% for industry 1% recreational

1 Mha. irrigated with GW Value of GW irrigation production: 4,700 Meur (30% of overall)

Environmental objectives

Hotspots

	Sierra de Crevillente	W. La Mancha	Almería	Doñana	Úbeda
Collective action	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Conjunctive use	\checkmark	X (no surface water)	\checkmark	X (no surface water)	Requested
Water efficiency	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Legal pitfalls	?	Unlicensed wells	Unlicensed wells	Unlicensed wells & land use	Unlicensed wells
External resources	\checkmark	\checkmark	Requested	Requested	Х
Unconventional resources	Х	Х	\checkmark	Х	Х
Cost-recovery	Х	Х	Х	Х	Х
Land use policy	Favors irrigation	Favors irrigation	Favors irrigation	Favors irrigation	Favors irrigation

Land use policy supporting irrigation

Unsolved issues

Mantainance of GW irrigation BUT

- No durable solutions to environmental impact due to water table drop
- No solutions to quality degradation
- Little, if any, focus on land use policy
- High public spending

"Decision makers will prefer a probabilistic loss to a certain loss" (Feitelson, 2005)

Concluding Remarks

EU WFD distant from what is actually happening on the ground

- Socio-economic considerations prevail
- Water users have other priorities and concerns (markets, subsidies...)
- Problems (and solutions) rooted outside the water sphere
- Legal issues complicate the picture
- Technical solutions externalize costs and may put additional pressure on the environment

FUNDACIÓN BOTÍN

Concluding Remarks

 Collective action by users and co-management make water use more rational but not necessarily more environmentally sustainable: what is the incentive for it?

To decrease pressure on GW:

- Market forces, subsidy policies and energy prices are likely to affect the viability of some low-value crops
- For cash crops, complementing GW with other sources BUT with cost recovery from users
- Transparency & accountability about public spending and who pays for what

Thank you for your attention

NDACIÓN BOTÍN

Sierra de Crevillente

- 9000 has.
- Max depth GW levels: 400-500m
- Drops of 10m/yr
- High-value crop: 12,000 (€/ha)
- GW quality degradation
- Surface water transfer

- Public land occupation
- Request for surface water

Úbeda

- 27000 ha.
- Max depth GW levels: 100-300m
- Small production margins

- Max depth GW levels: 100-300m
- Sea water intrustion
- Alternative water sources

