What do climate change models tell us? Spain

L. Garrote

UNIVERSIDAD POLITÉCNICA DE MADRID

Introduction

- Projections of runoff
 - Studies made by Cedex
- Projections of water availability
 - WAAPA model, global for Europe and specific for Spain
 - Analysis of factors determining water availability
- Role of adaptation
 - Effect of policy on water availability

Studies of Cedex (2010, 2017) Methodology

Study of 2010

6 projections SRES A2 6 projections SRES B2

Study of 2017

6 projections RCP4.5 6 projections RCP8.5

Climate forcing

Hydrologic model

Figura 77. Esquema conceptual del módulo de evaluación de RRHH de SIMPA

Results by basin

Hydrologic projections

Comparison of studies by Cedex (2010-2017)

Tabla 27. Rango y media de Δ en las variables hidroclimáticas en España en cada PI y escenario de emisiones según el presente estudio y comparación con el de CEDEX 2010.

			Presente Estudio									
		ESPAÑA		RCP 4.	5	RCP 8.5						
			Мх	Med	Mn	Mx	Med	Mn				
Precipitation	%)	2010-2040	9	-2	-8	1	-4	-8				
	PRE (%)	2040-2070	-1	-6	-13	3	-8	-16				
		2070-2100	1	-7	-17	-2	-14	-24				
Temperature	(Dē	2010-2040	1.5	0.9	0.4	1.6	1.0	0.5				
	TEM (ºC)	2040-2070	2.6	1.6	0.9	3.4	2.3	1.7				
		2070-2100	3.2	2.0	1.5	5.6	3.9	2.8				
Potential ET	ETP (%)	2010-2040	6	3	1	7	4	2				
		2040-2070	11	7	4	14	10	8				
		2070-2100	14	9	6	24	17	12				
Actual ET	ETR (%)	2010-2040	4	-1	-3	0	-3	-3				
		2040-2070	-2	-3	-5	0	-4	-7				
		2070-2100	0	-3	-5	-2	-6	-11				
	ESC (%)	2010-2040	20	-3	-13	4	-7	-14				
Runoff		2040-2070	-1	-11	-23	9	-14	-29				
		2070-2100	4	-13	-31	-1	-24	-43				

CEDEX 2010										
S	RES B	2	SRES A2							
Max	Med	Min	Max	Med	Min					
-3	-6	-10	0	-5	-11					
-3	-8	-12	-4	-9	-16					
-2	-9	-14	2	-17	-28					
1.9	1.6	1.4	1.8	1.5	1.2					
3.0	2.5	2.0	3.4	2.9	2.5					
4.4	3.6	2.7	5.8	4.8	4.0					
8	7	6	6	6	6					
14	12	10	14	13	12					
19	15	13	28	21	19					
-3	-5	-8	1	-3	-7					
-1	-6	-10	-2	-6	-10					
0	-7	-12	2	-12	-24					
1	-8	-18	-2	-8	-22					
-5	-11	-21	-8	-16	-34					
-1	-14	-28	0	-28	-40					

Similar results, slightly less reduction in runoff

Results of Cedex 2017

Projected reduction of runoff (%)

Tabla 24. Δ (%) ESC en cada DH y PI según cada proyección. Se indican los valores máximo (Mx), mínimo (Mn) y el promedio (Med) para cada RCP. Los colores reflejan la gradación del cambio.

ESC Anual (%)		RCP 4.5									RCP 8.5								
		F4A	M4A	N4A	Q4A	R4A	U4A	Mx	Med	Mn	F8A	M8A	N8A	Q8A	R8A	U8A	Mx	Med	Mn
2010-2040	2	-7	-15	-12	-14	25	25	-3	-15	6	-5	-17	-19	-11	-5	6	-9	-19	
Duero	Duero 2040-2070 2070-2100	-10	-8	-14	-17	-27	1	1	-13	-27	-12	-20	-23	-19	-31	15	15	-15	-31
		-6	-21	-18	-13	-36	9	9	-14	-36	-23	-28	-15	-40	-46	3	3	-25	-46
	2010-2040 Tajo 2040-2070 2070-2100	5	-4	-22	-10	-17	31	31	-3	-22	12	-5	-20	-20	-13	-4	12	-8	-20
Tajo		-6	-3	-14	-13	-29	3	3	-11	-29	-8	-19	-31	-16	-34	19	19	-15	-34
		-2	-20	-23	-13	-40	12	12	-14	-40	-23	-23	-18	-41	-51	7	7	-25	-51
2010-2040 Guadiana 2040-2070	9	-5	-35	-12	-23	46	46	-3	-35	18	-8	-30	-22	-20	5	18	-9	-30	
	-6	-3	-21	-13	-36	9	9	-12	-36	-9	-23	-45	-19	-45	33	33	-18	-45	
	2070-2100	1	-25	-37	-15	-50	22	22	-17	-50	-27	-26	-27	-50	-63	15	15	-30	-63
	2010-2040	10	-4	-38	-11	-24	52	52	-2	-38	18	-10	-30	-22	-21	8	18	-10	-30
Guadalquivir	2040-2070	-3	-2	-22	-10	-37	15	15	-10	-37	-6	-24	-51	-17	-48	35	35	-18	-51
	2070-2100	2	-22	-43	-16	-51	18	18	-19	-51	-30	-27	-32	-49	-67	13	13	-32	-67
	2010-2040	6	-4	-21	-13	-22	15	15	-7	-22	12	-13	-19	-23	-19	7	12	-9	-23
Segura	Segura 2040-2070	-1	-7	-10	-18	-32	-1	-1	-11	-32	-10	-17	-37	-23	-48	-3	-3	-23	-48
	2070-2100	-6	-19	-28	-17	-43	-9	-6	-20	-43	-36	-30	-34	-44	-63	-17	-17	-38	-63
2010-2040 Júcar 2040-2070	5	1	-17	-7	-26	21	21	-4	-26	15	-12	-20	-20	-25	-4	15	-11	-25	
	-6	-4	-7	-11	-34	-8	-4	-12	-34	-12	-21	-34	-22	-49	-7	-7	-24	-49	
	2070-2100	-7	-16	-26	-18	-46	-11	-7	-21	-46	-36	-28	-26	-41	-62	-20	-20	-36	-62
	2010-2040	0	-6	-3	-7	-12	15	15	-2	-12	-3	-9	-7	-9	-10	-2	-2	-7	-10
Ebro	2040-2070	-9	-12	-10	-13	-19	-5	-5	-11	-19	-9	-19	-14	-16	-25	4	4	-13	-25
	2070-2100	-7	-16	-12	-10	-25	-3	-3	-12	-25	-25	-33	-14	-32	-40	-10	-10	-26	-40

Large variability, strong reduction of runoff

Results of Cedex 2010-2017

Projected reduction of runoff (%)

Large variability, strong reduction of runoff (10% for RCP4-5)

Water availability

Runoff is a proxy for changes in water availability

- But there are other factors...
 - Changes in variability
 - Water management: reliability, environmental flows, storage
- Simple model to estimate water availability
 - Streamflow, storage, demands and environmental flows
 - Analysis under climate change scenarios

WAAPA Model

WAAPA: Water Availability and Adaptation Policy Analysis

WAAPA MODEL ALGORITHM Reservoirs are Supply operated jointly to supply a set of demands

GEOGRAPHICAL DATA

Reservoirs and demands distributed in subbasin

WAAPA MODEL DATA

One reservoir and one demand per subbasin

Potential Water Availability analysis

DEMAND-RELIABILITY CURVE

PWA analysis under climate change

DEMAND-RELIABILITY CURVE

Climate scenarios

- Climate scenarios were taken from regional models in different projects: PRUDENCE, ENSEMBLES and CORDEX
 - 8 A2, 4 B2, 3 A1B, 5 RCP2, 5 RCP4, 5 RCP6, 5 RCP8
 - Time slices CTL: 1960-2000 FUTURE: 2070-2100

Streamflow data were corrected for bias

Significant reduction in most basins

Analysis of European basins

Scenario RCP4.5

Loop over 5 models

Analysis of Uncertainty

Runoff: Model uncertainty larger than emission scenario uncertainty Availability: same level of uncertainty (storage)

Specific study of Mediterranean basins

Climate projections

$$\Delta CV = \frac{CV_{PROJ} - CV_{HIST}}{CV_{HIST}}$$

Change in Mean Annual Flow

$$\Delta MAF = \frac{MAF_{PROJ} - MAF_{HIST}}{MAF_{HIST}}$$

Climate projections

Reduction in MAF and larger increase in CV Stronger forcing in areas already exposed to water scarcity

Climate projections

RCP-2

ORCP-4

RCP-6

■ RCP-8

Reduction in MAF and larger increase in CV Stronger forcing in areas already exposed to water scarcity

Potential Water Availability

Potential Water Availability

Large uncertainty and significant reduction of PWA Model uncertainty larger than emission scenario uncertainty

Potential Water Availability

Large uncertainty and significant reduction of PWA Model uncertainty larger than emission scenario uncertainty

Projected changes of MAF vs. PWA

$$\Delta PWA = \frac{PWA_{PROJ} - PWA_{HIST}}{PWA_{HIST}}$$

Change in Mean Annual Flow

$$\Delta MAF = \frac{MAF_{PROJ} - MAF_{HIST}}{MAF_{HIST}}$$

Projected changes of MAF vs. PWA

Changes in MAF are a good proxy for changes in PWA We found stronger dispersion in areas with high variability

Projected changes of MAF vs. PWA

Changes in MAF are a good proxy for changes in PWA We found stronger dispersion in areas with high variability

Changes in MAF vs PWA

 MAF_{HIST}

24

Changes in MAF vs PWA

We found a range of behaviors:

1 similar reduction; 2 less reduction PWA; 3 cross; 4 more reduction PWA

Changes in MAF vs PWA

We found a range of behaviors:

1 similar reduction; 2 less reduction PWA; 3 cross; 4 more reduction PWA

The role of adaptation

- Strong reductions of runoff and water availability
- Policy and management may modify availability
 - Water allocation to environmental flows
 - Investment in infrastructure or improved management
 - Governance: social arrangements to accept less reliability
- What is the impact of policy on water availability?
 - Simple analysis based on modelling framework

Adaptation options

Reference Management

Every reservoir supplies local demands only

Improved Management

All reservoirs contribute to supply all demands

POLICY: densification of water transport and distribution networks; enhancement of management capacity

Reference Governance

Improved Governance

POLICY: enhancement of legal framework for water sharing; capacity building to improve education of water users

Effect of adaptation: management and governance

Effect of adaptation: Storage, Environmental Flow, Efficiency

Policy target

Maintain acceptable reliability under climate change scenarios

Main policy action

Demand reduction to maintain reliability under climate change

Additional policy actions

- Supply enhancement through increased reservoir storage
- Increase water efficiency in urban use
- Modify environmental flow conditions

Effect of adaptation: Storage, Environmental Flow, Efficiency

The range and effectivity of measures vary strongly across basins

Conclusions

Modeling tools

- Model performance is very poor while describing the currently observed features of hydrologic regime relevant for water availability
- Model uncertainty is very wide, equal or greater than emission scenario uncertainty. Is this of any use?

Water availability projections

- Climate change impacts on water availability are uncertain and heterogeneous, but are expected to be strongly negative in Spain
- Impacts are stronger in areas already affected by water scarcity

Role of adaptation policy

- Improved water management and water governance may compensate adverse effects of climate on water availability
- Effectiveness varies across basins, requiring local analyses

What do climate change models tell us? Spain

L. Garrote

UNIVERSIDAD POLITÉCNICA DE MADRID